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& Split-flow thin cell (SPLITT) fractionation (SF) provides separation of colloidal particles or
macromolecules into two fractions. A gravitational SF (GSF) system was constructed and its applic-
ability was tested for removal of aggregates from mass-produced polymethyl methacrylate (PMMA)
latex beads. The full-feed depletion (FFD) mode of GSF (FFD-GSF) was found to be a simpler
alternative to the conventional mode for removal of the aggregates. Unlike in the conventional
mode, where two inlets are used for feeding of the sample suspension and the carrier liquid
respectively, only one inlet (for the sample feeding) is used in the FFD mode, allowing easier control
of the flow rate. Also the sample suspension is not diluted during FFD mode operation. Aggregated
particles were found only in one of the two fractions, allowing removal of the aggregates. The
sample was continuously fed into the GSF system, showing potential application to a large quantity
operation for removal of the PMMA aggregates.

Keywords aggregate, binary separation, full-feed depletion (FFD), large quantity-
removal, polymethyl methacrylate (PMMA) latex beads, SPLITT fractionation (SF)

INTRODUCTION

Polymeric latex beads play important roles in various industries
including the paints and coatings, ceramic processing, and biotechnology.[1]

Polymeric microbeads with uniform sizes have found widespread applica-
tions such as in modeling physical phenomena, calibrating measuring
instruments, and in immunoassays on medical diagnostic test.[1–2]
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Sometimes mass-production of polymeric microbeads is hampered by the
presence of beads having non-uniform sizes and even some aggregates.
Often, for best performance of the latex beads, those aggregates must be
removed.

Split-flow thin cell (SPLITT) fractionation (SF) is a family of techniques
that can be employed for large quantity-separation of colloidal particles
and macromolecules into two subpopulations based on their sizes.[3–8] SF
has been used for separation of proteins,[7,9–11] glass beads,[6,8] starch
granules,[6,12] liposomes,[13] cells,[14–16] silica particles,[17] magnetic
particles,[18] and environmental particles.[19–21]

SF is carried out in a thin ribbon-like channel (0.1� 1mm thick) across
which an external field is applied.[3–8] There are a few subtechniques of
SF based on the type of the external field employed, including gravitational
SF (GSF), centrifugal SF (CSF), and electrical SF (ESF). In GSF, the Earth’s
gravity is used as the external field.

The expanded side views of the GSF channel are shown schematically in
Figure 1. GSF can be operated in two different modes: conventional mode

FIGURE 1 Expanded side views of GSF channels operating in the conventional mode (a) and the
full-feed depletion (FFD) mode (b).
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and the full-feed depletion (FFD) mode.[22,23] The FFD mode provides
merits over the conventional mode. The FFD mode is simpler to operate
since only one inlet flow is used for the sample feeding, requiring only
one pump and allows easier control of the flow rates. Also, there is no sam-
ple dilution as there is no incoming flow of the carrier liquid. In the con-
ventional mode, sample dilution is unavoidable due to the presence of the
incoming flow of the carrier liquid

In this work, a GSF system was constructed and its operation in the FFD
mode was tested for removal of aggregates from mass-produced polymethyl
methacrylate (PMMA) latex beads.

THEORY

Figure 1(a) shows the GSF operating in the conventional mode, where
the sample suspension is fed through the inlet-a0 at the flow rate of V(a0)
while the carrier liquid is fed through the inlet-b0 at the flow rate of
V(b0). The ‘‘inlet splitting plane (ISP)’’ in Figure 1(a) denotes an imaginary
line dividing the two inlet streams. Usually in the conventional mode opera-
tion, V(b0) is much higher than V(a0) to compress the sample toward the
top wall of the channel above the ISP. While migrating down the channel
by the flow, particles are forced to settle by the external field. When the
fluid stream reaches the outlet splitter, it is divided into two fractions by
the outlet splitter. The ‘‘outlet splitting plane (OSP)’’ denotes the line
separating the two outlet flows. Sample particles settling fast enough to
cross the OSP will exit the outlet-b, and the rest will exit the outlet-a, thus
providing separation of the particles into two fractions (fraction-a and b)
based on their settling velocities.

For spherical particles having the same densities, their settling velocities
depend only on the size. In the conventional mode of GSF, the cut-off
diameter, dc is given by[5]

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18g

bLGDq
ðV ðaÞ � 0:5V ða0ÞÞ

s
; ð1Þ

where g is the viscosity of the carrier liquid, b the channel breadth, L the
channel length, G the Earth’s gravity, Dq the density difference between
the sample and the carrier liquid, V(a0) the volumetric flow rate (in
mL=min) exiting the outlet-a. Thus SF provides size-based separation
into two fractions, with the fraction-a containing particles having diam-
eters smaller than dc, and the fraction-b containing those larger than dc.
By using Eq. (1), the flow rates needed for separating particles at dc can
be calculated.
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Figure 1(b) shows the GSF channel operating in the FFD mode.[23]

Unlike in the conventional mode, only one inlet (inlet-a0) is used in the
FFD mode for the sample feeding. In the FFD mode, the cut-off diameter,
dc is given by[18]

dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18g

bLGDq
ðV ða0Þ � 0:5V ðbÞÞ

s
ð2Þ

Again, the flow rates required for separating particles with the cut-off
diameter dc in the FFD mode can be calculated by using Eq. (2). One of
the shortcomings of the FFD mode is that the resolution is expected to
be lower in the FFD mode than in the conventional mode.[18] In the
FFD mode, particles are not compressed towards the top wall of channel,
resulting in some of particles smaller than dc being eluted in the
fraction-b. The fraction-a will still contain only those smaller than dc. The
FFD mode has been employed rather successfully for some applica-
tions,[18,24–25] Recycling of the fraction-b (by feeding the fraction-b through
the inlet-a0 for a repeated SF operation at the same flow rate conditions)
has been suggested to improve the resolution.[18]

EXPERIMENTAL

Chemicals and Materials

PMMA latex beads having the average density of 1.18 g=mL were
mass-produced for industrial applications. Figure 2 shows optical micro-
graphs of the PMMA latex beads obtained at the magnification of 400
times. As shown in Figure 2, the PMMA latex beads are spherical, and con-
tain some snowman-like aggregated particles (circled). Figure 3 shows the
size distribution obtained from optical microscopy (OM) for the particles
shown in Figure 2 by measuring about 1,000 particles. For aggregates,
the longest dimension was taken as the diameter. The OM analysis of the
PMMA beads gave the mean diameter of 3.8 mm, standard deviation of
0.36 mm, and the coefficient of variation (CV) of 9.35%. About 1% of the
particles were found to be aggregates. For GSF separation, the PMMA latex
beads were dispersed at the concentration of 0.5% (w=v) in an 8:2 mixture
of the GSF carrier liquid and ethanol.

Apparatus

The GSF channel used in this study was constructed in the laboratory as
shown in Figure 4. The channel was assembled by clamping two glass plates,
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two Mylar spacers and one stainless steel sheet (used as the flow-splitter)
between two PlexiglasTM blocks. The thicknesses of the stainless steel
splitter and the Mylar spacers were same at 127 mm, resulting in the total

FIGURE 3 Size distribution of PMMA latex beads shown in Figure 2 determined by optical microscopy.
1,000 particles were measured.

FIGURE 2 Optical micrographs (�400) of mass-produced PMMA latex beads.
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thickness of the channel to be 381 mm. The channel was 20 cm long and
4 cm wide. The flow through the inlet-a0 was provided by a Minipuls 3 peri-
staltic pump (Gilson Medical Electronics, Middleton, WI, USA).

The carrier liquid was an aqueous solution of 0.1% (w=v) FL-70 (Fisher
Scientific, Fair Lawn, NJ, USA) and 0.02% (w=v) sodium azide (NaN3).
FL-70 was used as a dispersing agent and NaN3 as a bactericide. The viscos-
ity and the density of the carrier liquid were taken to be 0.01 poise and
1.00 g=mL, respectively in all calculations. The GSF system was maintained
at room temperature at all times.

The optical microscopy (OM) was performed by using an Olympus
BX51TF optical microscopy (Shinjuku Monolith, Shinjuku-ku, Japan).
For OM analysis of the size distribution of the PMMA latex beads, the sizes
of nearly 1,000 particles were measured with the Image InsideTM software
(Focus, Daejeon, Korea).

RESULTS AND DISCUSSION

In the FFD mode operations, usually the cut-off diameter dc and the
sample-feeding flow rate V(a0) are chosen first, then V(b) is determined
using Eq. (2). Once V(b) is determined, V(a) becomes V(a0)�V(b). As
shown in Figures 2 and 3, most of the single (unaggregated) PMMA
particles are smaller than about 4 mm in diameter, thus dc was chosen to
be 4 mm, so that all aggregated particles would exit through the outlet-b.

It is noted that a care must be taken in choosing the sample-feeding
flow rate, V(a0). Higher V(a0) is desired as it allows higher sample

FIGURE 4 Diagram of GSF channel assembly used in this study. The channel has dimensions of width
(w)¼ 0.0381 cm, breadth (b)¼ 4 cm, and length (L)¼ 20 cm, respectively.
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throughput (TP, mass of the sample that can be processed by GSF in a unit
time). At the same time, V(a0) must be kept below the level above which the
flow becomes turbulent. It has been suggested that the Reynolds number
(Re) be lower than about 1,500 for a flow to be laminar.[26–27] Re can be
calculated by Re ¼ ðqDhhviÞ=g,[28] where q is the density of the carrier,
hni the mean flow velocity, and Dh the hydraulic diameter.[29] In normal
operating conditions of GSF, Re is usually much lower than the limit due
to the thin dimension of the GSF channel. More often V(a0) is limited by
more practical reasons such as the back pressure. It is also noted that
V(a0) can not be too low as the sample beads tend to settle down and pre-
cipitate on the bottom of the channel at too low flowrates. In this study,
V(a0) was chosen to be 3mL=min at which Re is calculated to be 2.47. With
dc of 4mm and V(a0) of 3mL=min, Eq. (2) gives V(b) of 2.25mL=min, and
thus V(a) of 0.75mL=min.

Figure 5 shows the optical micrographs of the original PMMA sample
and its two GSF fractions-a and b. The size distributions of those GSF frac-
tions determined by OM are shown in Figure 6. It can be seen in Figure 5
that the fraction-a contains only the single particles. Out of about 1,000

FIGURE 5 Optical micrographs (�400) of the original PMMA latex sample and its two GSF fractions-a
and b. GSF conditions: V(a0)¼ 3.00, V(a)¼ 0.75, V(b)¼ 2.25mL=min, Carrier¼water containing 0.1%
(w=v) FL-70þ 0.02% (w=v).
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particles measured, no particles larger than 4 mm were found in the
fraction-a as shown in Figure 6, and thus the fraction-a is considered to
be purely of the single particles without aggregates. Particles larger than
4 mm (mainly the aggregates) were found only in the fraction-b as shown
in Figures 5 and 6.

It is noted that the fraction-b contains significant amount of the single
particles as well as the aggregates, as shown in Figures 5 and 6, which is typi-
cal of the FFD mode as mentioned earlier. One may recycle the fraction-b
(by re-feeding the fraction-b through the inlet- a0) to recover more of the
single particles.[18]

CONCLUSION

Results show GSF is applicable for removal of aggregates from PMMA
latex beads. For this purpose, the FFD mode of GSF (FFD-GSF) seems to
provide a good alternative to the conventional mode. Because FFD-GSF
requires only one pump (instead of two required in the conventional
mode), the flow rate control is simpler and, more importantly in some
cases, the sample suspension is not diluted (if not concentrated). The only
drawback of the FFD mode seems to be that a complete recovery of the sin-
gle particles may not be possible due to co-elution of the single particles
with the aggregated ones through the exit-b. One may be able to increase

FIGURE 6 Size distributions of GSF fractions-a and b shown in Figure 5 determined by optical
microscopy.
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the recovery rate by recycling the fraction-b. Even then a complete recovery
may not be possible.

FFD-GSF could be applied not only for the removal of large contami-
nants but also for narrowing the distribution of various types of
micron-sized colloidal particles. More work is planned for implementation
of a GSF system that is intended to use only in the FFD mode. By removing
the inlet splitter, the design of the GSF channel will become simpler. An
enlargement of the GSF channel will also be easier, which will allow higher
sample throughput (TP)
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